

## SHANNON GRACEY

EXAM 1/CHAPTERS 1, 2.1

- $\pi$  100 POINTS POSSIBLE
- $\pi~$  YOUR WORK MUST SUPPORT YOUR ANSWER FOR FULL CREDIT TO BE AWARDED
- $\pi$   $\,$  NO GRAPHING CALCULATOR IS PERMITTED  $\,$
- $\pi$  PROVIDE EXACT ANSWERS (NO DECIMALS PLEASE)

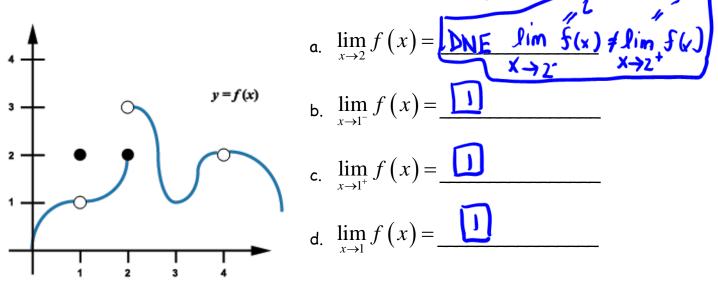


**RESTROOMS** ONCE YOU BEGIN THE EXAM, YOU MAY NOT LEAVE THE PROCTORING CENTER UNTIL YOU ARE FINISHED. THIS MEANS NO BATHROOM BREAKS...

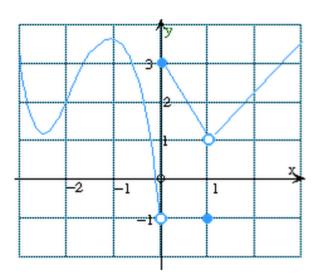


EXAM SCORE GOOD LUCKS

1. (8 POINTS, 2 POINTS EACH) Use the graph of y = f(x) shown below to find each limit, if it exists. If the limit does not exist, explain why



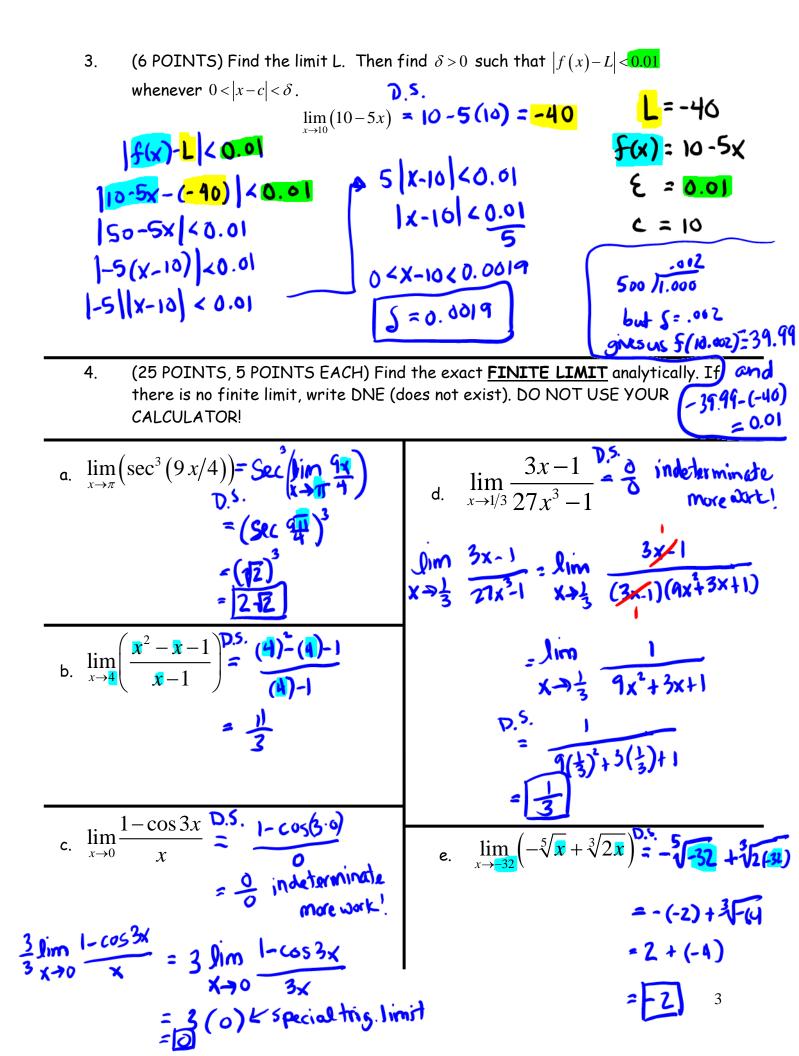
2. (6 POINTS) Consider the function shown below. Is this function continuous at x = 0? EXPLAIN using the <u>3 conditions</u> for continuity at a point!



1.  $f(0) = 3 \checkmark$ 2.  $\lim_{x \to 0} y \text{ DNE Fails}$ 3.

Circle one:

continuous at 
$$x = 1$$
 (not continuous at  $x = 1$ )



5. (16 POINTS, 8 POINTS EACH) Find the exact **FINITE LIMIT** analytically. If there is no finite limit, write DNE (does not exist). DO NOT USE YOUR CALCULATOR!

a. 
$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2} \stackrel{\text{D.5.}}{=} \frac{0}{0}$$
 indeterminate, more work!

$$\int \lim_{X \to 2} (\frac{1}{x - 2}) (\frac{1}{x} + \frac{1}{2}) = \int \lim_{X \to 2} (\frac{1}{x})^{2} - (\frac{1}{2})^{2}}{(x - 2) (\frac{1}{x} + \frac{1}{2})} = \int \lim_{X \to 2} \frac{(\frac{1}{x})^{2} - (\frac{1}{2})^{2}}{(x - 2) (\sqrt{x} + \sqrt{z})} = \int \lim_{X \to 2} \frac{1}{(x - 2) (\sqrt{x} + \sqrt{z})} = \int \frac{1}{\sqrt{z} + \sqrt{z}} = \int \frac{1}{2\sqrt{z}} \text{ or } \frac{\sqrt{z}}{4}$$

b. 
$$\lim_{\Delta x \to 0} \frac{1}{\Delta x} - \frac{1}{x} \frac{DS}{\Delta x} = \frac{1}{0}$$
 induterminate, more voork!  

$$\lim_{\Delta x \to 0} \frac{1}{\Delta x} - \frac{1}{x} \frac{(x + \Delta x)}{(x + \Delta x)}$$

$$\lim_{\Delta x \to 0} \frac{x - (x + \Delta x)}{x(x + \Delta x)} \cdot \frac{1}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-\Delta x}{x(x + \Delta x)} \cdot \frac{1}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-1}{x(x + \Delta x)} \cdot \frac{1}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-1}{x(x + \Delta x)}$$

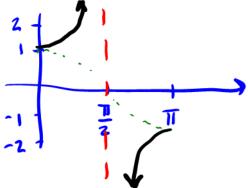
$$\frac{DS}{\Delta x} - \frac{1}{x(x + \Delta x)}$$

$$\frac{DS}{\Delta x} - \frac{1}{x(x + \Delta x)}$$

| 6. (10 POINTS) Use the limit definition to find the derivative of $f$ with respect<br>to $x$ of $f(x) = \sin(x)$ . |
|--------------------------------------------------------------------------------------------------------------------|
| $f'(x) = \lim_{x \to \infty} \frac{\sin(x + \Delta x) - \sin(x)}{\sin(x + \Delta x)} = \sin(x)$                    |
| $\Delta X \neq 0$ $\Delta X$                                                                                       |
| = lim sinxcos Ax + cosxsinAx - sinx                                                                                |
| 6x70 6x                                                                                                            |
| = lim asysingx-sinx (1-cosox)                                                                                      |
| AX→O AX                                                                                                            |
| = lin (05x5inAx _ lim Sinx (1-cosAx)<br>DX+70 DX _ DX-76 _ DX                                                      |
| DX+O DX DX+O DX                                                                                                    |
| = COSX Jim SINAX<br>AX70 DX - SINX Jim 1-COSAX<br>AX70 AX                                                          |
| $= \cos(1) - \sin(0)$                                                                                              |
| = Cosx                                                                                                             |

7. (7 POINTS) Find the limit. It is acceptable to write a result of plus or minus infinity.  $\lim_{x \to \pi/2^+} \sec x \quad \exists$ 

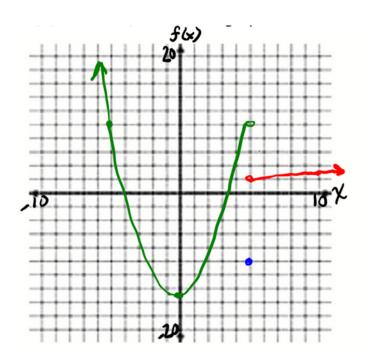
O



8. (10 POINTS) Consider the function

$$f(x) = \begin{cases} x^2 - 15, & \text{if } x < 5 \\ -10, & \text{if } x = 5 \\ \sqrt{x - 1}, & \text{if } x > 5 \end{cases}$$

a) (4 POINTS) Sketch the graph.



b) (3 POINTS) Identify the values of *c*, for which  $\lim_{x\to c} f(x)$  exists. Use interval notation.

c) (3 POINTS) On what interval(s) is this function continuous? Use interval notation.

9. (12 POINTS, 3 POINTS EACH). Evaluate the limits below using the following information:

$$\lim_{x \to c} f(x) = \infty \lim_{x \to c} g(x) = \frac{1}{2}, \text{ and } \lim_{x \to c} h(x) = 5$$
a. 
$$\lim_{x \to c} \left[\frac{h(x)}{f(x)}\right] = \frac{1}{2} \lim_{x \to c} h(x)$$
c. 
$$\lim_{x \to c} \left(-g(x) + \left[h(x)\right]^2\right)$$

$$= -\lim_{x \to c} g(x) + \left[\lim_{x \to c} h(x)\right]^2$$

$$= -\frac{1}{2} + \left(\frac{5}{2}\right)^2$$
b. 
$$\lim_{x \to c} \left[g(x)f(x)\right]$$
d. 
$$\cos^{-1}\left(\lim_{x \to c} g(x)\right) = \cos^{-1}\left(\frac{1}{2}\right)$$

$$= \frac{1}{2}$$

Ξ

3

8

= (<mark>1</mark>)(∞)

3